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1 Group Homology

Let G be a group and A be a G-module. Recall that we defined the n-th cohomology group
of G with coefficients in A to be

Hn(G,A) := ExtnZ[G](Z, A).

Similarly, define the n-th homology group of G with coefficients in A to be

Hn(G,A) := TorZ[G]
n (Z, A).

We will be using the standard resolution (free resolution) of Z by Z[G]-modules:

...→ Z[Gn+1]
dn−→ Z[Gn]

dn−1−−−→ ...
d2−→ Z[G2]

d1−→ Z[G]
ε−→ Z→ 0 (1)

where dn(g0, ..., gn) :=
n∑
i=0

(−1)i(g0, ..., ĝi, ..., gn) and ε(
∑
agg) =

∑
ag is the augementation

map.

Now, applying the left exact HomZ[G]( , A) to 1, we obtain

0→ HomZ[G](Z[G], A)
d0−→ HomZ[G2](Z[G], A)

d1−→ HomZ[G3](Z[G], A)
d2−→ ...

It follows that for n ≥ 1,

Hn(G,A) = Im(dn)
/

ker(dn−1)

and define H0(G,A) := ker(d0) ∼= AG.

Similarly, by applying right exact functor ⊗Z[G] A to 1, we obtain

...→ Z[Gn+1]⊗Z[G] A
dn−→ Z[Gn]⊗Z[G] A

dn−1−−−→ ...
d2−→ Z[G2]⊗Z[G] A

d1−→ Z[G]⊗Z[G] A
d0−→ 0.

Hence, we have

Hn(G,A) = ker(dn)
/

Im(dn+1) .

Just as the group cohomology, we have

Proposition 1.1. Let G be a group.
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(a) A G-mod homomorphism α : A→ B induces

αn,∗ : Hn(G,A)→ Hn(G,B)

g ⊗ a 7→ g ⊗ α(a).

(b) A short exact sequence of G-mods

0→ A
i−→ B

π−→ C → 0

induces a long exact sequence of abelian groups:

...→ H1(G,C)
δ−→ H0(G,A)

i∗−→ H0(G,B)
π∗−→ H0(G,C)→ 0.

Recall that the kernel of the augmentation map

ε : Z[G]→ Z∑
agg 7→

∑
ag

is called the augmentation ideal, denoted as IG. One can easily check that IG is a free
Z-module with basis {g − 1 : g ∈ G}.

Lemma 1.2. H0(G,A) ∼= A
/
IGA =: AG.

Proof. We have the sequence

...→ Z[G2]⊗Z[G] A
d1−→ Z[G]⊗Z[G] A

d0−→ 0.

We want to show that Im(d1) ∼= IGA. Under the identification Z[G] ⊗Z[G] A ∼= A (as G-
modules), it’s easy to see that IGA ∈ Im(d1). For a simple tensor (g0, g1)⊗a ∈ Z[G2]⊗Z[G]A,

d1
(
(g0, g1)⊗ a

)
= (g0 − g1)a ∈ IGA.

Thus, Im(d1) ∼= IGA.

Remark 1.3. For a G-module A,

H0(G,A) = AG is the largest trivial G-submodule

H0(G,A) = AG is the largest trivial G-module that’s a quotient.

Definition 1.4. Let H be a subgroup of G and A be a H-module. Define

IndGH(A) := Z[G]⊗Z[H] A

CoIndGH(A) := HomZ[H](Z[G], A).

IndGH(A) and CoIndGH(A) are given the G-module structures: for g, g′ ∈ G, a ∈ A and
φ ∈ HomZ[H](Z[G], A),

g′ · (g ⊗ a) := g′g ⊗ a
(g′ · φ)(g) := φ(gg′).

We say B is an induced (resp coinduced) G-module if there exists an abelian group A such
that

B = IndG1 (A) =: IndG(A)

(resp B = CoIndG1 (A) =: CoIndG(A).
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Lemma 1.5. Let G be a group and A be an abelian group. Then,

Hn(G, IndG(A)) =

{
A, n = 0

0, n ≥ 1
.

Hn(G,CoIndG(A)) =

{
A, n = 0

0, n ≥ 1
.

Proof. We prove the statement for homology with coeffients in IndG(A). For n = 0, we
know that

H0(G, IndG(A)) ∼= (IndG(A))G

=
(
Z[G]⊗ A

)
G

= A[G]
/
IGA[G]

∼= A.

Now suppose n ≥ 1. Then, as G modules, we have

Z[Gn]⊗Z[G] IndG(A) = Z[Gn]⊗Z[G] ⊗Z[G]Z[G]⊗Z A

= Z[Gn]⊗Z A.

This shows that Hn(G, IndG(A)) ∼= Hn({1}, A). To compute this we can consider the free
resolution by {1}-modules (ie abelian groups):

0→ Z id−→ Z→ 0.

This gives Hn(G, IndG(A)) ∼= Hn({1}, A) = 0.

Remark 1.6. This result can be thought of as a special case of Shapiro’s lemma.

Lemma 1.7. Suppose H is a subgroup of G with finite index and A is an H-module. Then,
the map

CoIndGH(A)
∼=−→ IndGH(A)

φ 7→
∑

g∈G/H

g−1 ⊗ φ(g)

is a G-module isomorphism.

Proof. One can check that the inverse is given by

IndGH(A)→ CoIndGH(A)

g ⊗ a 7→
(
g′ 7→

{
a, g′ = g

0, g′ 6= g

)
.

Corollary 1.8. Let G be a finite group. If B is induced or coinduced by an abelian group
A, then

H0(G,B) = H0(G,B) = A

Hn(G,B) = Hn(G,B) = 0, for all n ≥ 1.
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2 Tate Cohomology

In this section, we assume G is finite and A is a G-module.

Definition 2.1. Define the norm map

NG : A→ A

a 7→
∑
g∈G

ga.

Remark 2.2. We have

IGA ⊆ ker(NG)

NG(A) ⊂ AG.

Thus, the norm map induces

N̂G : AG → AG.

Definition 2.3. (Tate Cohomology) Suppose G is finite and A is a G-module. Define
the Tate cohomology groups as

Ĥn(G,A) =


Hn(G,A), n ≥ 1

H−n−1(G,A), n ≤ −2

coker(N̂G), n = 0

ker(N̂G), n = −1

.

Theorem 2.4. Let G be a finite group and A be a G-module. Then, every short exact
sequence of G-modules

0→ A
α−→ B

β−→ C → 0

induces a doubly infinite long exact sequence of Tate cohomology groups

...→ Ĥn(G,A)
α̂n

−→ Ĥn(G,B)
β̂n

−→ Ĥn(G,C)
δ̂n−→ Ĥn+1(G,A)→ ...

Proof. Consider the diagram:

... H1(G,C) AG BG CG 0

0 AG BG CG H1(G,A) ...

δ0

N̂A
G

α0

N̂B
G

β0

N̂C
G

α0 β0
δ0

Note that the first exact sequence is given by the homology groups and second exact sequence
is given by cohomology groups. We denote N̂A

G as the norm map from AG → AG. Similarly
for B and C. It’s easy to check that this diagram is commutative.
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Now by applying snake lemma to the diagram above, we obtain

ker(N̂A
G ) ker(N̂B

G ) ker(N̂C
G )

... H1(G,C) AG BG CG 0

0 AG BG CG H1(G,A) ...

coker(N̂A
G ) coker(N̂B

G ) coker(N̂C
G )

α̂0 β̂0

δ̂0

δ0

N̂A
G

α0

N̂B
G

β0

N̂C
G

α0 β0
δ0

α̂0 β̂0

δ̂0

.

By snake lemma and the definition of Tate cohomology groups, it remains to show the
following:

(i) δ0 factors through ker(N̂A
G ) and ker(α̂0) = Im(δ̂0).

(ii) δ0 factors through coker(N̂C
G ) and ker(δ̂0) = Im(β̂0).

For (i), since Im(δ0) = ker(α0) and ker(α̂0) ⊂ ker(N̂A
G ), it suffices to show ker(α0) =

ker(α̂0). It is easy to see one inclusion ker(α̂0) ⊂ ker(α0). For the inclusion ker(α0) ⊂
ker(α̂0), let a ∈ AG such that α0(a) = 0. then since α0 is injective, we have N̂A

G (a) = 0, i.e.
a ∈ ker(NA

G ) and so a ∈ ker(α̂0).

For (ii), to show δ0 factors through coker(N̂C
G ), we need to show Im(NC

G ) ⊂ ker(δ0).
Since ker(δ0) = Im(β0), this is equivalent to showing Im(NC

G ) ⊂ Im(β0). Let c ∈ Im(NC
G ).

Then, there exists c′ ∈ CG such that N̂C
G (c′) = c. As β0 is surjective, we get an element

b ∈ BG with β0(b) = c, i.e. c ∈ Im(β0). Now because the diagram is commutative, we also

have ker(δ̂0) = Im(β̂0).

We have shown before that for finite group G, induced and coinduced G-modules have
trivial cohomology in positive degrees. The following proposition shows that the definition
of Tate cohomology is the minimal modification so that this is correct for all integer degrees.

Proposition 2.5. Let G be a finite group. Suppose B is induced or coinduced. Then,

Ĥn(G,B) = 0

for all n ∈ Z.

Proof. It suffices to verify Ĥ0(G,B) and Ĥ−1(G,B) for B = IndG(A) where A is an abelian
group. By definition,

Ĥ0(G,B) = BG
/
N̂G
G

Ĥ−1(G,B) = ker(N̂G)
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where N̂G : BG → BG is induced by

NG : B → B.

Now, since B = IndG(A) = Z[G]⊗Z A and the G-action is only applied to Z[G], we have

ker(NG) = IGB

Im(NG) = NGZ⊗Z A = Z[G]G ⊗Z A = BG.

Hence, Ĥ−1(G,B) and Ĥ0(G,B) are both 0.

Example 2.6. We show that for a finite group G,

Ĥ−2(G,Z) := H1(G,Z) = Gab

where Gab is the abelianization of G.

Consider the exact sequence of G-modules:

0→ IG → Z[G]
ε−→ Z→ 0.

Note that since Z[G] is obviously free viewed as a Z[G]-module, Ĥn(G,Z) = 0 for all n ∈ Z.
In particular, H1(G,Z) = 0. So we have the exact sequence:

0 H1(G,Z) H0(G, IG) H0(G,Z[G]) H0(Z[G],Z) 0.

IG/I
2
G Z[G]/IG Z

δ 0

The map H0(G, IG) → H0(G,Z[G]) is induced by inclusion IG ↪→ Z[G], and hence is the
zero map. Now we have

H1(G,Z)
δ−→∼= IG/I

2
G.

Note that this shows that IG/I
2
G is an abelian group. On the other hand, consider the map

γ : IG/I
2
G → Gab

(g − 1) + I2G 7→ g.

We leave to the readers to check this is a well-defined group isomorphism. It follows that

H1(G,Z)
δ−→∼= IG/I

2
G

γ−→∼= Gab.
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3 Tate cohomology of Cyclic groups & Herbrand Quo-

tients

In this section, we assume G = 〈σ〉 is a finite cyclic group. So, the augmentation ideal
IG = (σ − 1) is an ideal in Z[G]. We will also make use of the free resolution of Z by
G-modules

...Z[G]
NG−−→ Z[G]

σ−1−−→ Z[G]
ε−→ Z→ 0. (2)

Theorem 3.1. Suppose G is a finite cyclic group and A is a G-module. Then,

Ĥn(G,A) = Ĥn+2(G,A)

for all n ∈ Z.

Proof. We first apply the functor HomZ[G]( , A) to 3,

0 HomZ[G](Z[G], A) HomZ[G](Z[G], A) ...

0 A A ...

(σ−1)∗ (NG)∗

σ−1 NG

So for n ≥ 1,{
H2n(G,A) = ker(σ − 1)/NG(A) = AG/N̂G(AG) =: Ĥ0(G,A)

H2n−1(G,A) = ker(NG)/(σ − 1)A.

On the other hand, we apply ⊗Z[G] A to and get

... Z[G]⊗Z[G] A Z[G]⊗Z[G] A Z[G]⊗Z[G] A 0

... A A A 0

(σ−1)⊗id NG⊗id (σ−1)⊗id

σ−1 NG σ−1

.

So for n ≥ 1, {
H2n(G,A) = ker(NG)/(σ − 1)A = ker(N̂G) =: Ĥ−1(G,A)

H2n−1(G,A) = ker(σ − 1)/NG(A).

Now that we know the cohomology groups of cyclic group is periodic with period 2, we
can define the following:

Definition 3.2. Suppose G is a finite cyclic group and A is a G-module. The Herbrand
quotient of A is

h(A) :=
|Ĥ0(G,A)

|Ĥ−1(G,A)|

whenever both factors are finite.
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Corollary 3.3. Let G be a finite cyclic group and consider the short exact sequence

0→ A
α−→ B

β−→ C → 0.

Then we have an exact hexagon

Ĥ0(G,A) Ĥ0(G,B)

Ĥ−1(G,C) Ĥ0(G,C)

Ĥ−1(G,B) Ĥ−1(G,B)

α̂0

β̂0
δ̂−1

δ0β̂−1

α̂−1

.

Corollary 3.4. Suppose G is a finite cyclic group and consider the short exact sequence

0→ A→ B → C → 0.

If any two of h(A), h(B), h(C) are defined, so is the third and

h(B) = h(A)h(C)

Proof. Apply the exact hexagon.

Corollary 3.5. Let G be a finite cyclic group. Then,

h(A⊕B) = h(A)h(B).

Lemma 3.6. Let G be a finite cyclic group and A be induced, coinduced or finite G-module.
Then, h(A) = 1.

Proof. If A is induced or coinduced, then all Tate cohomology groups are trivial.

Suppose A is finite. Consider the short exact sequence

0→ AG
i−→ A

σ−1−−→ A
π−→ AG → 0.

Then,

|AG| = |ker(σ − 1)| = |AG|.

On the other hand, from N̂G : AG → AG, we have

|ker(N̂G)| = |AG|
|N̂G(AG)|

=
|AG|

|N̂G(AG)|

=
∣∣∣AG/N̂G(AG)

∣∣∣
= |coker(N̂G)|.

Thus, h(A) = 1.
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Corollary 3.7. Let G be a finite cyclic group. and A be a G-module which is also finitely
generated as an abelian group. Then,

h(A) = h(A/Ator).

Proof. Consider the short exact sequence

0→ Ator → A→ A/Ator → 0

and apply the lemma to the finite group Ator.

Corollary 3.8. Let G be a finite cyclic group and A be a trivial G-module which is also
finitely generated as an abelian group of rank r. Then,

h(A) = |G|r.

Corollary 3.9. Let G be a finite cyclic group. Suppose

α : A→ B

is a G-module homomorphism that has finite kernel and finite cokernel. Then, h(A) = h(B).

Proof. Consider two exact sequences:

0→ ker(α)→ A→ Im(α)→ 0

0→ Im(α)→ B → coker(α)→ 0.

Then, h(ker(α) = 1 = coker(α) and

h(A) = h(ker(α))h(Im(α))

= h(Im(α))

= h(B).

Corollary 3.10. Let G be a finite cyclic group and A be a G-module containing a G-
submodule B of finite index. Then,

h(A) = h(B).

Proof. Apply the lemma to the inclusion map B ↪→ A.
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4 Tate’s Theorem

We first make a remark on induced and coinduced modules. Suppose A is a G-module and
Å be the underlying abelian group. Recall that IndG(Å) and CoIndG(Å) have the following
G-module structure: for g, z ∈ G, a ∈ Å and φ ∈ CoIndG(Å),

g · (z ⊗ a) = gz ⊗ a
(g · φ)(z) = φ(zg).

We give IndG(A) and CoIndG(A) the following G-module structures: for g, z ∈ G, a ∈ A
and φ ∈ CoIndG(A),

g · (z ⊗ a) = gz ⊗ ga
(g · φ)(z) = g(φ(g−1z)).

The following proposition tells us that they are all isomorphic as G-modules.

Proposition 4.1. Suppose G is a group (not necessarily finite) and A is a G-module. Then,

IndG(A)→ IndG(Å)

g ⊗ a 7→ g ⊗ ga

and

CoIndG(A)→ CoIndG(Å)

φ 7→ (ψ : z 7→ zφ(z−1)

are G-module isomorphisms. In particular, when G is finite,

IndG(Å) ∼= IndG(A) ∼= CoIndG(A) ∼= CoIndG(Å).

In the remaining section, we assume G is a finite group. We would either let A be an
abelian group or a G-module. Consider the exact sequence

0→ IG → Z[G]
ε−→ Z→ 0.

By applying ⊗Z A, we get an exact sequence

0→ IG ⊗Z A→ IndG(A)→ A→ 0.

By applying HomZ( , A), we get an exact sequence

0→ A→ CoIndG(A)→ HomZ(IG, A)→ 0.

For a proof of these two facts, refer to [1].

Theorem 4.2. (Dimension Shifting) Let G be finite and A be a G-module. For a
subgroup H in G, we have

Ĥn(H,A) ∼= Ĥn−1(H,HomZ(IG, A))

Ĥn(H,A) ∼= Ĥn+1(H, IG ⊗Z A).
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The theorem tells us that Tate cohomology groups are completely determined if we
knew one cohomology group. Before stating Tate’s theorem, we need another criterion for
cohomological triviality.

Theorem 4.3. Let G be a finite group and A be a G-module. If H1(H,A) = H2(H,A) = 0
for all H ≤ G, then

Ĥ(G,A) = 0 for all n ∈ Z.

Proof. This is proved step-by-step. First of all, this is obvious for cyclic groups. One can
then apply inflation-restriction sequence with dimension shifting to prove for solvable group.
Lastly for arbitrary finite group G, one uses the composite of corestriction and restriction
on Sylow p-subgroups.

Theorem 4.4. (Tate’s Theorem) Let G be a finite group and A be a G-module. Suppose
for all subgroups H ≤ G, we have

(a) H1(H,A) = 0.

(b) H2(H,A) is cyclic of order |H|.

Then, for a generator ϕ ∈ H2(G,A), there exists an isomorphism

Φn
ϕ : Ĥn(G,Z)

∼=−→ Ĥn+2(G,A)

which only depends on the choice of ϕ.

Proof. Fix a generator ϕ : G2 → A of H2(G,A). Define

A(ϕ) := A⊕ free abelian group with basis {xg : g ∈ G \ {1}}.

The G-action on A is given by

g · xh := xhg − xg + φ(g, h)

with x1 := φ(1, 1). By using the fact that ϕ is a cocycle, one can check that this gives A(ϕ)
a G-module structure.

Let i : A ↪→ A(ϕ) be the inclusion map. Then, note that i ◦ ϕ : G2 → A(ϕ) is also a
cocycle. Define a 1-cocyle

χ : G→ A(ϕ)

g 7→ xg.

We claim that d(χ) = i ◦ ϕ. In fact for g1, g2 ∈ G,

d(χ)(g1, g2) = g2 · χ(g1)− χ(g1g2) + χ(g2)

= g2 · xg1 − xg1g2 + xg2
= xg1g2 − xg2 + φ(g1, g2)

= φ(g1, g2).
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This shows that i ◦ ϕ is a 2-coboundary. Since H2(G,A) is generated by ϕ, the map

i2 : H2(G,A)→ H2(G,A(ϕ))

[ϕ] 7→ [i ◦ ϕ] = 0

induced by the inclusion i : A ↪→ A(ϕ) is the zero map.

On the other hand, define

φ : A(ϕ)→ IG

xg 7→ g − 1

a 7→ 0

for any a ∈ A. Now for every subgroup H ≤ G, we have the following two exact sequences
of H-modules,

0→ A
i−→ A(ϕ)

φ−→ IG → 0 (3)

0→ IG → Z[G]
ε−→ Z→ 0. (4)

The sequence 3 induces a long exact sequence

H1(H,A) H1(H,A(ϕ)) H1(H, IG)

H2(H,A) H2(H,A(ϕ)) H2(H, IG)

i1 φ1

i2=0 φ2

.

By assumption, H1(H,A) = 0 and H2(H,A) = Z/|H|Z for every H ≤ G. Also, from

sequence and the fact that Ĥn(G,Z[G]) = 0, we know that

H1(H,A) = Ĥ0(H,Z) = Z/|H|Z
H2(H, IG) = H1(H,Z) = Hom(H,Z) = 0.

From these, we deduce that H1(H,A(ϕ)) = H2(H,A(ϕ)) = 0 for all subgroups H ≤ G. It
follows from previous theorem that

Ĥn(G,A(ϕ)) = 0

for all n ∈ Z. We then define

Φn
ϕ : Ĥn(G,Z)

δn−→ Ĥn+1(G, IG)
δn+1
ϕ−−→ Ĥn+2(G,A)

where δn is the connecting map in the long exact sequence for sequence 4 and δn+1
ϕ is the con-

necting homomorphism in the long exact sequence for sequence 3. Since Ĥn(G,A(ϕ)) = 0 =

Ĥn(G,Z[G]), these two maps are isomorphism. Hence the composite Φn
ϕ is an isomorphism,

which concludes the proof.
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